摘 要: | 根据2003-2011年渔汛期间我国鱿钓船在西南大西洋海域的生产统计数据,结合海洋遥感获得的海表温度(SST)和海面高度(SSH)等数据,以单位捕捞努力量渔获量(CPUE)和作业次数作为中心渔场指标,以月份、经度、纬度、SST和SSH为输入因子,利用BP神经网络方法构建西南大西洋阿根廷滑柔鱼中心渔场预报模型。比较14种不同结构的BP神经网络模型,以CPUE作为中心渔场预报指标的BP模型均较佳,其拟合残差范围为0.004 0~0.005 5,平均值为0.004 7;而以作业次数作为中心渔场预报指标的BP模型,其拟合残差范围为0.009 3~0.011 6,平均值为0.010 4。输入因子为月份、经度、纬度、SST和SSH,输出因子为初值化后的CPUE,网络结构为5-4-1时的BP神经网络模型为最佳,其拟合残差为0.004 025,该模型可用于阿根廷滑柔鱼中心渔场的预报。BP神经网络方法可为准确渔场预报提供新途径。
|