首页 | 本学科首页   官方微博 | 高级检索  
     


Kepler discretization in regular celestial mechanics
Authors:P. Deuflhard
Affiliation:(1) Institut für Angewandte Mathematik der Universität Heidelberg, Im Neuenheimer Feld 294, 6900 Heidelberg 1, W. Germany
Abstract:In this paper, a special extrapolation method for the numerical integration of perturbed Kepler problems (given in KS-formulation) is worked out and analyzed in detail. The underlying so-called Kepler discretization isexact for the pure (elliptic) Kepler motion. A numerically stable realization is presented together with a backward error analysis: this analysis shows that the effect of the arising rounding errors can be regarded as a small perturbation inferior to the physical perturbation. For test purposes, a well-known example describing the motion of an artificial Earth satellite in an equator plane subject to the oblateness perturbation is used to demonstrate the efficiency of the new extrapolation method.Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号