首页 | 本学科首页   官方微博 | 高级检索  
     

应用分水岭变换与支持向量机的极化SAR图像分类
引用本文:巫兆聪,欧阳群东,胡忠文. 应用分水岭变换与支持向量机的极化SAR图像分类[J]. 武汉大学学报(信息科学版), 2012, 37(1): 7-10,72,127
作者姓名:巫兆聪  欧阳群东  胡忠文
作者单位:武汉大学遥感信息工程学院,武汉市珞喻路129号,430079
基金项目:国家863计划资助项目,国家自然科学基金资助项目,中央高校基本科研业务费专项资金资助项目
摘    要:结合分水岭变换与支持向量机的特性,提出一种新的极化SAR图像分类算法。其基本思想是先通过分水岭变换及区域合并处理,将极化SAR图像分割成一系列同质区;再以同质区为基本单元,进行特征提取及样本选择后采用支持向量机分类。实验结果表明,该算法可有效降低相干斑对分类的影响,与传统基于像素的SVM算法相比,其分类精度有显著的提高,且结果也更易于理解。

关 键 词:极化SAR图像分类  分水岭变换  区域合并处理  支持向量机

Polarimetric SAR Image Classification Using Watershed-Transformation and Support Vector Machine
WU Zhaocong,OUYANG Qundong,HU Zhongwen. Polarimetric SAR Image Classification Using Watershed-Transformation and Support Vector Machine[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 7-10,72,127
Authors:WU Zhaocong  OUYANG Qundong  HU Zhongwen
Affiliation:1(1 School of Remote Sensing and Information Engineering,Wuhan University,129 Luoyu Road,Wuhan 430079,China)
Abstract:Considering the properties of watershed-transformation and support vector machine,a method for classifying polarimetric SAR image is proposed in this paper.First,polarimetric SAR image is segmented into a series of homogenous regions through watershed transformation and region merging process.Then,region-based classification is performed by utilizing support vector machine after feature extraction and sample selection.Experimental results show that the proposed classification method depresses speckle effectively,when in comparison with traditional pixel-based SVM algorithm,the classification accuracy is improved by dramatically and more interpretable result can also be achieved.
Keywords:polarimetric SAR image classification  watershed transformation  region merging process  support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号