Abstract: | The filter for wave-equation-based water-layer multiple suppression, developed by the authors in the x-t, the linear τ-p, and the f-k domains, is extended to the parabolic τ-2 domain. The multiple reject areas are determined automatically by comparing the energy on traces of the multiple model (which are generated by a wave-extrapolation method from the original data) and the original input data (multiples + primaries) in τ-p space. The advantage of applying the data-adaptive 2D demultiple filter in the parabolic τ-p domain is that the waves are well separated in this domain. The numerical examples demonstrate the effectiveness of such a dereverberation procedure. Filtering of multiples in the parabolic τ-p domain works on both the far-offset and the near-offset traces, while the filtering of multiples in the f-k domain is effective only for the far-offset traces. Tests on a synthetic common-shot-point (CSP) gather show that the demultiple filter is relatively immune to slight errors in the water velocity and water depth which cause arrival time errors of the multiples in the multiple model traces of less than the time dimension (about one quarter of the wavelet length) of the energy summation window of the filter. The multiples in the predicted multiple model traces do not have to be exact replicas of the multiples in the input data, in both a wavelet-shape and traveltime sense. The demultiple filter also works reasonably well for input data contaminated by up to 25% of random noise. A shallow water CSP seismic gather, acquired on the North West Shelf of Australia, demonstrates the effectiveness of the technique on real data. |