Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: An experimental study |
| |
Authors: | Susan Dixon M.J. Rutherford |
| |
Affiliation: | Geology Department, Brown University, Providence, RI 02912U.S.A. |
| |
Abstract: | Chemical studies of two ophiolite suites and of selected mid-oceanic rift (MOR) regions indicate the presence of certain magmatic compositions: basalt, Fe-enriched basalt, and sodium granite (plagiogranite). There is a notable lack of evidence for melts of intermediate composition (i.e. 50–60 wt.% SiO2). To determine possible relationships between basic rocks (basalts and gabbros) and acidic rocks (plagiogranites) a primitive basalt was fractionated at low pressure, under anhydrous conditions, and at different oxygen fugacities near the iron-wustite buffer and slightly above the quartz-fayalite-magnetite buffer. Samples of this basalt were taken to slightly above liquidus temperatures and then cooled at rates ranging from 1 to 2°C/hr. A liquid line of descent characterized by an Fe enrichment was delineated by quenching these experiments from a final temperature in the range of 1200 to 1000°C and analyzing the residual liquid (glass). After 95% crystallization of olivine, plagioclase, calcium pyroxene, and ilmenite, the residual liquid was an Fe-enriched basalt. This Fe-enriched basalt became immiscible at a temperature of about 1010°C. The immiscible phases produced were a more Fe-enriched basaltic liquid and a granitic liquid. The granitic liquid is similar in composition to the naturally occurring plagiogranites found in small volumes in ophiolites and in certain MOR regions. It is therefore concluded that silicate liquid immiscibility could be the petrogenetic process responsible for producing plagiogranite in some MOR regions and in some ophiolites. On the other hand, plagiogranites in ophiolites and MOR rock suites having andesitic and dacitic composition rocks may have evolved under conditions more closely approximating equilibrium crystallization and/or they may have evolved at high water pressures. The available experimental data suggest that amphibole would crystallize early and yield SiO2-enriched liquids at depths greater than 4.5 km for PH2O's in the range 0.6–1.0 Ptotal.The major problem in interpreting any of the natural plagiogranites as products of silicate liquid immiscibility is the fact that neither the Fe-enriched conjugate liquid or its crystalline equivalent has been described in the ophiolite or MOR literature. The identification of this Fe-rich conjugate magma is essential in any rock suite if a completely convincing case for silicate liquid immiscibility is to be made. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|