首页 | 本学科首页   官方微博 | 高级检索  
     

多叉树蚁群算法及在区位选址中的应用研究
引用本文:赵元,张新长,康停军. 多叉树蚁群算法及在区位选址中的应用研究[J]. 地理学报, 2011, 66(2): 279-286. DOI: 10.11821/xb201102013
作者姓名:赵元  张新长  康停军
作者单位:中山大学地理科学与规划学院,广州510275
摘    要:
本文提出了基于多叉树蚁群算法(ant colony optimization based on multi-way tree) 的区 位选址优化方法。在多目标和大型空间尺度约束条件下,地理区位选址的解决方案组合呈现 海量规模、空间搜索量庞大,难以求出理想解。基于多叉树的蚁群算法对地理空间进行多叉树划分,在多叉树的层上构造蚂蚁路径(ant path),让蚂蚁在多叉树的搜索路径上逐步留下信息 素,借助信息素的通讯来间接协作获得理想的候选解。采用该方法用于广州市的地理区位选址,取得良好结果。实验结果表明:采用基于多叉树的蚁群算法,改善了蚂蚁在空间搜索能 力,适合求解大规模空间下的区位选址问题。

关 键 词:区位选址  多叉树  蚁群算法  广州  
收稿时间:2010-02-24
修稿时间:2010-05-30

An Ant Colony Algorithm Based on Multi-way Tree for Optimal Site Location
ZHAO Yuan,ZHANG Xinchang,KANG Tingjun. An Ant Colony Algorithm Based on Multi-way Tree for Optimal Site Location[J]. Acta Geographica Sinica, 2011, 66(2): 279-286. DOI: 10.11821/xb201102013
Authors:ZHAO Yuan  ZHANG Xinchang  KANG Tingjun
Affiliation:School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
Abstract:
Site location by brute-force method is difficult for optimization due to massive spatial data and huge solution space under the constraint condition of multi-objective and large spatial resolutions.In this study,an improved ant colony optimization(ACO) based on multi-way tree is introduced to solve site location problem.Better solutions can be obtained swiftly according to the density of pheromone the ants leave on the search paths constructed in nested subspaces divided by means of the multi-way tree algor...
Keywords:site location  multi-way tree  ant colony optimization  Guangzhou  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地理学报》浏览原始摘要信息
点击此处可从《地理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号