首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高温后花岗岩力学性质及微孔隙结构特征研究
引用本文:徐小丽,高峰,沈晓明,金春花.高温后花岗岩力学性质及微孔隙结构特征研究[J].岩土力学,2010,31(6):1752-1758.
作者姓名:徐小丽  高峰  沈晓明  金春花
作者单位:1. 南通大学,建筑工程学院,江苏,南通,226019
2. 中国矿业大学,深部岩土力学与地下工程重点实验室,江苏,徐州,221008;中国矿业大学,力学与建筑工程学院,江苏,徐州,221008
3. 中国矿业大学,力学与建筑工程学院,江苏,徐州,221008
基金项目:国家重点基础研究发展规划(973计划),国家自然科学基金创新研究群体基金,国家自然科学基金,江苏省高校自然科学研究计划,南通大学引进人才科研启动基金 
摘    要:采用MTS815液压伺服试验系统及9310型微孔结构分析仪对花岗岩在温度作用下(常温~1300℃)的宏观力学性质及微孔隙结构特征进行了较为系统的研究。结果表明:①在800℃之前,岩样力学性质变化规律不明显;超过800℃,岩样强度迅速劣化;达到1200℃,岩样基本失去了承载能力。②岩样孔隙率随温度升高而增大,孔隙率的阀值温度在800℃左右,与岩样在该温度点强度突然降低相一致。③岩样孔隙率较小,但连通性好,在阶段进汞曲线上显示为不同宽度微裂隙并存的特征,累计进汞曲线呈台阶状,温度超过800℃,超微孔逐渐向微孔隙转化,岩样连通性增强。④岩样孔隙分布分形维数随温度的升高反而降低。在高温作用下,岩样中的热损伤由初始非规则的裂隙结构逐渐向均匀化的孔穴结构转化,非均匀性弱化是导致岩样孔隙分布分形维数降低的根本原因。

关 键 词:花岗岩  温度载荷  力学性质  孔隙率  分形维数
收稿时间:2009-02-20

Research on mechanical characteristics and micropore structure of granite under high-temperature
XU Xiao-li,GAO Feng,SHEN Xiao-ming,JIN Chun-hua.Research on mechanical characteristics and micropore structure of granite under high-temperature[J].Rock and Soil Mechanics,2010,31(6):1752-1758.
Authors:XU Xiao-li  GAO Feng  SHEN Xiao-ming  JIN Chun-hua
Institution:1. School of Architecture and Civil Engineering, Nantong University, Nantong, Jiangsu 226019,China; 2. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 3. School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
Abstract:Mechanical characteristics and micropore structure of granite under high-temperature (from normal to 1 300 ℃) have been researched with hydraulic servo system MTS 815 and micropore structure analyzer 9310. The results are as follows: ① Mechanical characteristics do not show obvious variations below 800 ℃; strength decreases suddenly above 800 ℃ and bearing capacity is almost lost at 1 200 ℃. ② Rock porosity increases with rising temperatures; the threshold temperature is about 800 ℃; at this temperature its effect is basically uniform with strength decreasing rapidly. ③ The connectivity is good although rock porosity is small. The coexistence of the characteristics of different widths of micro-fissures is displayed in phase pressure-mercury test curves. The accumulated pressure-mercury test curves show a stepwise shape. Ultramicropores gradually convert to micropores and connectivity increases when temperatures are over 800 ℃. ④ Rock fractal dimension of pore distribution decreases with rise of temperature. Thermal damage of rock transforms from irregular crack structure to homogeneous pore structure gradually at high temperature. The weakening of rock heterogeneity is the basic reason for the decrease of fractal dimension of pore distribution.
Keywords:granite  temperature load  mechanical characteristics  porosity  fractal dimension
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号