摘 要: |
2021年7月20日郑州市特大暴雨过程给人民的生命财产造成了巨大损失。然而,此次暴雨降水量极端性强,数值预报不确定性极大。为提高中国气象局(CMA)数值模式对此类暴雨极端雨强预报不确定性的描述能力,利用CMA自主研发的3 km水平分辨率的对流尺度数值预报系统(China Meteorological Administration Mesoscale model,简称CMA-Meso),通过设计集合同化观测扰动方案与云分析雷达反射率滤波阈值调整方案,实现对常规观测资料和雷达反射率的微小扰动,构建对流尺度集合预报初始扰动场,开展集合预报试验,评估对流尺度集合预报的极端雨强预报不确定性特征,并与CMA全球集合预报和区域集合预报进行对比分析。结果表明:(1)基于3 km水平分辨率的对流尺度集合预报对此次极端降水的预报仍存在一定的落区偏差,但不同集合预报成员的极端雨强值具有较好的发散度,且个别成员预报的极端雨强值接近实况的624.1 mm,较好地代表了极端降水的预报不确定性。 (2)通过对比CMA不同分辨率集合预报的极端雨强值、离散度及累积降水邻域分数技巧评分,发现极端雨强值及离散度与模式水平分辨率密切相关,分辨率越高,极端雨强概率预报技巧越高,表明对流尺度集合预报能够更好描述极端雨强预报的不确定性及其极端性。(3)同时扰动常规观测资料及雷达资料的对流尺度集合预报,能够在较短的预报时效内对模式水汽场及环流形势产生影响,促使降水集合预报离散度在较短的预报时效内增长起来,有效提升了极端雨强概率预报能力。总体而言,通过扰动常规观测资料和雷达资料的对流尺度集合预报有助于提高模式对极端雨强概率预报技巧。
|