首页 | 本学科首页   官方微博 | 高级检索  
     检索      


GSTA is a major glutathione S-transferase gene responsible for 4-hydroxynonenal conjugation in largemouth bass liver
Authors:Pham Robert T  Barber David S  Gallagher Evan P
Institution:Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, P.O. Box 110885, Gainesville, FL 32611-0885, USA.
Abstract:We have previously shown that largemouth bass (Micropterus salmoides) has a remarkable ability to conjugate 4-hydroxy-2-nonenal (4HNE), a mutagenic and cytotoxic alpha,beta-unsaturated aldehyde produced during the peroxidation of lipids. In addition, we have isolated a glutathione S-transferase cDNA (bass GSTA) that encodes a recombinant protein which is highly active in 4HNE conjugation and structurally similar to plaice (Pleuronectes platessa) GSTA. In the present study, HPLC-GST subunit analysis revealed the presence of at least two major GST isoforms in bass liver, with one peak constituting 80% of the total bass liver GST protein. Liquid chromatography mass spectrometry (LC-MS) and electrospray ionization analysis of the major bass GST subunit yielded a molecular weight of 26,396 kDa. Endo-proteinase Lys-C digestion and Edman degradation protein sequencing of this GST peak demonstrated that this protein was encoded by bass GSTA. Analysis of genomic DNA fragments isolated by nested PCR indicated the presence of a GST gene cluster in bass liver that contained GSTA, and was similar to a GST gene cluster characterized by Leaver et al., in plaice. Collectively, our data indicates the presence of a major GST in bass liver involved in the protection against oxidative stress. This GST is part of a gene cluster that may be conserved in certain freshwater and marine fish.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号