首页 | 本学科首页   官方微博 | 高级检索  
     

非负矩阵分解和Curvelet在遥感图像融合中的应用
引用本文:曾立庆,童怀水. 非负矩阵分解和Curvelet在遥感图像融合中的应用[J]. 华东地质学院学报, 2013, 0(4): 415-418
作者姓名:曾立庆  童怀水
作者单位:[1]东华理工大学江西省数字国土重点实验室,江西抚州344000 [2]东华理工大学理学院,江西抚州344000
基金项目:江西省数字国土重点实验室开放研究基金项目(DLLJ201013)
摘    要:
非负矩阵分解是一种提取图像原始信息局部特征的新方法,第二代Curvelet变换是一种效果较好的多尺度变换分析方法。结合两者特征提出一种基于NMF和Curvelet的遥感图像的融合方法,首先对已配准的多光谱图像和全色图像进行Curevelet分解,得到各层系数(Coarse、Detail和Fine尺度层)。然后对Coarse尺度层(低频系数)进行NMF分解,提取出包含特征基的低频系数;对Detail和Fine尺度层(高频系数)采用方差为测度参数进行邻域融合。最后进行Curevelet逆变换得到融合图像。实验结果表明,该方法的融合图像能较好地保留光谱信息,并在空间细节信息上得到改善,优于小波方法、Curvelet等方法。

关 键 词:非负矩阵分解  Curvelet变换  遥感图像  图像融合

Application of Non-negative Matrix Factorization and Curvelet to Remote Sensing Image Fusion
ZENG Li-qing,',TONG Huai-shui. Application of Non-negative Matrix Factorization and Curvelet to Remote Sensing Image Fusion[J]. Journal of East China Institute of Technology, 2013, 0(4): 415-418
Authors:ZENG Li-qing    TONG Huai-shui
Affiliation:2 ( 1. Digital Land Key Laboratory of Jiangxi Province, East China Institute of Technology, Fuzhou, JX 344000, China; 2. School of Science, East China Institute of Technology, Fuzhou,JX 344000, China)
Abstract:
Nonnegative matrix factorization is a new method for extracting local features from original information of images. The second generation Curvelet is a preferable multiscale analysis algorithm. A new method of remote sensing image was proposed based on NMF and Curvelet combining with both characteristics. Firstly, The regis tered images of Multispectral and Panchromatic were decomposed using curvelet to get coefficients of each layer (Coarse,Detail and Fine scale layer). Secondly, NMF was applied to coarse scale layer( low frequency coeffi cients), and the resultant feature base was just the fusion result of low frequency suhhand coefficients ; the selec tion principle of detail and fine scale layer( high frequency coefficients) was the neighboring region variance maxi mum. Finally, the fused image was obtained by performing the inverse curvelet on the combined coefficients. The experimental results show that the proposed methods can effectively keep spectrum information, and improve in the detail information of space. And it outperforms waveletbased and curveletbased fusing algorithms.
Keywords:non-negative matrix factorization  curvelet transform  remote sensing  image fusion
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号