首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrological extreme variability in the headwater of Tarim River: links with atmospheric teleconnection and regional climate
Authors:Huaijun Wang  Yaning Chen  Weihong Li
Institution:1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), ürümqi, 830011, Xinjiang, China
2. University of Chinese Academy of Sciences, Beijing, 10049, China
Abstract:Variability and possible relationship between monthly 1-day maximum/minimum flow from headwater of Tarim River basin, climatic indices and regional climate were detected by Mann–Kendall test, continuous wavelet transform, cross-wavelet and wavelet coherence methods. The results showed that: (1) hydrological extremes have increased during past 50 years, and the trends of 1-day minimum flow were larger than that of 1-day maximum flow. The most significant change occurred in winter; (2) the hydrological extremes exhibited significant 1-year period and 0.5-year period along the whole hydrological series; (3) different circulation indices may influence the trends of hydrological extremes in different river. The area of polar vortex in North American (i25) and area of Northern Hemisphere polar vortex (i5) showed most significant correlation with 1-day maximum flow and 1-day minimum flow in Aksu River, respectively. In Hotan River, the most significant correlated climate indices with 1-day maximum and minimum flow were Southern oscillation index and area of Northern American Subtropical High (i15), respectively. The area of polar vortex in Atlantic and Europe Sector (i35) showed significant relationships with 1-day minimum flow in Yarkand River; (4) regions of shared power at 0.8–1.5 year mode were found between selected climate indices and the hydrological extremes, anti-phase relations were detected for most of the series; (5) the fluctuations of temperature have strong effects on hydrological extremes, and significant coherence between regional climate and extremes was found at 0.7–1.5 year scale. The results of the study provide valuable information for improving the long-term forecasting of the hydrological extremes using its relationship with climate indices.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号