首页 | 本学科首页   官方微博 | 高级检索  
     

基于面向对象分类的稀土开采区遥感信息提取方法研究
引用本文:代晶晶,吴亚楠,王登红,令天宇,王俊华. 基于面向对象分类的稀土开采区遥感信息提取方法研究[J]. 地球学报, 2018, 39(1): 111-118
作者姓名:代晶晶  吴亚楠  王登红  令天宇  王俊华
作者单位:中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室,中国地质大学(北京)地球科学与资源学院,中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室,中国地质大学(北京)地球科学与资源学院,中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室
基金项目:中国地质调查局项目“华南重点矿集区稀有稀散和稀土矿产调查项目”(编号: DD20160056);“川西甲基卡大型锂矿资源基地综合调查评价”(编号: DD20160055)
摘    要:
离子吸附型稀土矿是我国宝贵的矿产资源,运用遥感影像分类技术提取稀土开采区可以准确地实现对稀土开采状况的监测,但仅利用光谱信息往往难以保证分类精度。本文以江西寻乌稀土矿区为研究区,以IKONOS影像为数据源,应用面向对象分类方法提取了稀土开采区的遥感信息。针对稀土开采区的分布特点,选择基于边缘的分割算法进行影像分割;结合地形信息、光谱信息及几何信息建立规则集,进行特征提取;最后采用隶属度函数法实现面向对象分类,并与传统的光谱角填图分类进行对比分析。研究结果表明,面向对象分类法提取稀土开采区的总体精度为92.49%,Kappa系数为0.857 6,与传统监督分类方法相比有了很大的提高。

关 键 词:稀土   面向对象分类法   影像分割   特征提取   精度

Object-oriented Classification for the Extraction of Remote Sensing Information in Rare Earth Mining Areas
DAI Jing-jing,WU Ya-nan,WANG Deng-hong,LING Tian-yu and WANG Jun-hua. Object-oriented Classification for the Extraction of Remote Sensing Information in Rare Earth Mining Areas[J]. Acta Geoscientica Sinica, 2018, 39(1): 111-118
Authors:DAI Jing-jing  WU Ya-nan  WANG Deng-hong  LING Tian-yu  WANG Jun-hua
Affiliation:MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences,School of Earth Science and Resource, China University of Geosciences (Beijing),MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences,School of Earth Science and Resource, China University of Geosciences (Beijing) and MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences
Abstract:
Ion-absorbed rare earth is a valuable mineral resource, and using remote sensing image classification technology to extract rare earth mining area can accurately realize monitoring of Rare Earth Mining; nevertheless, it is difficult to ensure the extraction accuracy only by taking advantage of the spectral information. In this paper, object-oriented classification of IKONOS image was carried out to extract rare earth mining area of Xunwu in Jiangxi Province. In consideration of different characteristics of the rare earth mining area, edge segmentation algorithm was used to segment the image, and the terrain information, spectral information and geometric information were used to establish rule set in order to extract the feature. Finally, object-oriented classification was implemented by membership function method, and compared with traditional spectral angle mapping. The result indicates that extraction accuracy of the rare earth mining area is 92.49% and the Kappa coefficient is 0.857 6 by using the object-oriented classification method. Compared with the traditional supervised classification method, the extraction has been greatly improved.
Keywords:ion-absorbed rare earth ore   object-oriented classification   image segmentation   feature extraction   accuracy
本文献已被 CNKI 等数据库收录!
点击此处可从《地球学报》浏览原始摘要信息
点击此处可从《地球学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号