首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya
Authors:Mohamed Ali Kalefa El-ghali   Howri Mansurbeg   Sadoon Morad   Ihsan Al-Aasm  Karl Ramseyer
Affiliation:

aDepartment of Earth Sciences, Uppsala University, Villavägen 16, SE 75236 Uppsala, Sweden

bDepartment of Earth Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada

cInstitut für Geologie, Universität Bern, Baltzerstrasse 1-3, CH 3012 Bern, Switzerland

Abstract:The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite (δ18OVPDB = − 3.1‰ to + 1.1‰ and δ13CVPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface–offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised-valley LST sandstones and in the post-glacial, Gilbert-type deltaic LST sandstones as well as, less commonly, in the paraglacial, foreshore to shoreface HST sandstones and in the tide-dominated deltaic HST sandstones below the SBs.

Mesogenetic alterations include mainly the formation of abundant quartz overgrowths in the glacial, fluvial incised-valley LST sandstones, post-glacial, Gilbert-type deltaic LST sandstones and glacial, shoreface TST sandstones, in which early carbonate cements are lacking. Illite, chlorite and albitized feldspars, which occur in small amounts, are most common in the glacial, tide-dominated estuarine TST sandstones and paraglacial, shoreface HST sandstones. This study demonstrates that the spatial and temporal distribution of diagenetic alterations and their impact on reservoir-quality evolution in glacial, paraglacial and post-glacial sandstones can be better elucidated when linked to the depositional facies and sequence stratigraphic framework.

Keywords:Sequence stratigraphy   Depositional facies   Glaciogenic sandstones diagenesis   Upper Ordovician   The Murzuq Basin   SW Libya
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号