首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA
Authors:K C CONDIE  & A K SINHA
Institution:Department of Geoscience, New Mexico Tech, Socorro, NM  87801, USA,;Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA  24061, USA
Abstract:In progressing from a granitoid mylonite to an ultramylonite in the Brevard shear zone in North Carolina, Ca and LOI (H2O) increase, Si, Mg, K, Na, Ba, Sr, Ta, Cs and Th decrease, while changes in Al, Ti, Fe, P, Sc, Rb, REE, Hf, Cr and U are relatively small. A volume loss of 44% is calculated for the Brevard ultramylonite relative to an Al–Ti–Fe isocon. The increase in Ca and LOI is related to a large increase in retrograde epidote and muscovite in the ultramylonite, the decreases in K, Na, Si, Ba and Sr reflect the destruction of feldspars, and the decrease in Mg is related to the destruction of biotite during mylonitization. In an amphibolite facies fault zone separating grey and pink granitic gneisses in the Hope Valley shear zone in New England, compositional similarity suggests the ultramylonite is composed chiefly of the pink gneisses. Utilizing an Al–Ti–Fe isocon for the pink gneisses, Sc, Cr, Hf, Ta, U, Th and M-HREE are relatively unchanged, Si, LOI, K, Mg, Rb, Cs and Ba are enriched, and Ca, Na, P, Sr and LREE are lost during deformation. In contrast to the Brevard mylonite, the Hope Valley mylonite appears to have increased in volume by about 70%, chiefly in response to an introduction of quartz. Chondrite-normalized REE patterns of granitoids from both shear zones are LREE-enriched and have prominent negative Eu anomalies. Although REE increase in abundance in the Brevard ultramylonites (reflecting the volume loss), the shape of the REE pattern remains unchanged. In contrast, REE and especially LREE decrease in abundance with increasing deformation of the Hope Valley gneisses. Mass balance calculations indicate that ≥95% of the REE in the Brevard rocks reside in titanite. In contrast, in the Hope Valley rocks only 15–40% of the REE can be accounted for collectively by titanite, apatite and zircon. Possible sites for the remaining REE are allanite, fluorite or grain boundaries. Loss of LREE from the pink gneisses during deformation may have resulted from decreases in allanite and perhaps apatite or by leaching ofy REE from grain boundaries by fluids moving through the shear zone. Among the element ratios most resistant to change during mylonitization in the Brevard shear zone are La/Yb, Eu/Eu*, Sm/Nd, La/Sc, Th/Sc, Th/Yb, Cr/Th, Th/U and Hf/Ta, whereas the most stable ratios in the Hope Valley shear zone are K/Rb, Rb/Cs, Th/U, Eu/Eu*, Th/Sc, Th/Yb, Sm/Nd, Th/Ta, Hf/Ta and Hf/Yb. However, until more trace element data are available from other shear zones, these ratios should not be used alone to identify protoliths of deformed rocks.
Keywords:geochemistry  mylonitization  rare earth elements  shear zones
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号