首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Similarity Model for Maximum Ground-Level Concentration in a Freely Convective Atmospheric Boundary Layer
Authors:Bryan R Kerman
Institution:1. Atmospheric Environment Service, Downsview, Ontario, Canada
Abstract:A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号