首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络在天津市区地面沉降预测中的应用
引用本文:李涛,潘云,娄华君,李波,王宏,邹立芝. 人工神经网络在天津市区地面沉降预测中的应用[J]. 地质通报, 2005, 24(7): 677-681
作者姓名:李涛  潘云  娄华君  李波  王宏  邹立芝
作者单位:1. 吉林大学环境与资源学院,吉林,长春,130026
2. 首都师范大学资源环境与地理信息系统北京市重点实验室,北京,100037
3. 中国科学院地理科学与资源研究所,北京,100101
4. 山东省莱阳市广播电视局,山东,莱阳,265200
5. 中国地质科学院,北京,100037
基金项目:中国科学院知识创新工程资助项目(KZCX-SW-317-01)成果。
摘    要:在分析天津市区地面沉降特点的基础上,结合人工神经网络原理,选择1961-1980年的天津市区降水量、地下水开采量、前年沉降量、固结度作为训练样本的输入量,以这20年的地面沉降量作为输出量,用贝叶斯正则化算法训练BP网络,得到沉降的仿真模型。并把1981-1993年的资料用来进行预测检验,结果表明这是一种比较理想的地面沉降预测方法。最后在不同的降水量保证率下,预测了到2010年天津市区地面沉降的情况。

关 键 词:地面沉降  人工神经网络  BP算法  降水量保证率
文章编号:1671-2552(2005)07-0677-05
修稿时间:2004-08-07

Application of the artificial neural network in land subsidence prediction in the urban area of Tianjin Municipality, China.
LI Tao,PAN Yun,LOU Huajun,WANG Hong,ZOU Lizhi. Environment and Resource College,Jilin University,Changchun,Jilin,Chin,. Key Lab. of Resource Environment and GIS of Beijing,Capital Normal University,Beijing,Chin,. Institute of Geographical Sciences and Natural Resources,Chinese Academy of Sciences,Beijing,Chin,. Laiyang Radio and TV Department,Shandong Province,Laiyang,Shandong,China. Chinese Academy of Geological Sciences,Beijing,China. Application of the artificial neural network in land subsidence prediction in the urban area of Tianjin Municipality, China.[J]. Geologcal Bulletin of China, 2005, 24(7): 677-681
Authors:LI Tao  PAN Yun  LOU Huajun  WANG Hong  ZOU Lizhi. Environment  Resource College  Jilin University  Changchun  Jilin  Chin  . Key Lab. of Resource Environment  GIS of Beijing  Capital Normal University  Beijing  Chin  . Institute of Geographical Sciences  Natural Resources  Chinese Academy of Sciences  Beijing  Chin  . Laiyang Radio  TV Department  Shandong Province  Laiyang  Shandong  China. Chinese Academy of Geological Sciences  Beijing  China
Affiliation:LI Tao,PAN Yun,LOU Huajun,WANG Hong,ZOU Lizhi. Environment and Resource College,Jilin University,Changchun,Jilin,Chin,. Key Lab. of Resource Environment and GIS of Beijing,Capital Normal University,Beijing,Chin,. Institute of Geographical Sciences and Natural Resources,Chinese Academy of Sciences,Beijing,Chin,. Laiyang Radio and TV Department,Shandong Province,Laiyang,Shandong,China. Chinese Academy of Geological Sciences,Beijing,China
Abstract:On the basis of an analysis of the characteristics of subsidence,combined with the principle of the artificial neural network, the precipitation, groundwater yield, drawdown of the previous year and degree of consolidation between 1961 and 1980 in the urban district of Tianjin were taken as training net sample inputs and the subsidence over the 20 years as outputs. The subsidence simulation model was constructed after training of the back-propagation network with the Bayesian method. Then the data of 1981 to 1993 were used to check the model. The results indicate that this method with the artificial neural network is an ideal one to predict subsidence. At last the subsidence until 2010 of the urban district of Tianjin was predicted using different levels of precipitation assurance.
Keywords:ground subsidence  artificial neural network  back-propagation method  precipitation assurance
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地质通报》浏览原始摘要信息
点击此处可从《地质通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号