首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity
Authors:Alomir H Fávero Neto  Ronaldo I Borja
Institution:1.Department of Civil and Environmental Engineering,Stanford University,Stanford,USA;2.CNPq Scholar, Institute for Technological Research,S?o Paulo,Brazil
Abstract:We present a Lagrangian formulation for simulating the continuum hydrodynamics of dry granular flows based on multiplicative elastoplasticity theory for finite deformation calculations. The formulation is implemented within the smoothed particle hydrodynamics (SPH) method along with a variant of the usual dynamic boundary condition. Three benchmark simulations on dry sands are presented to validate the model: (a) a set of plane strain collapse tests, (b) a set of 3D collapse tests, and (c) a plane strain simulation of the impact force generated by granular flow on a rigid wall. Comparison with experimental results suggests that the formulation is sufficiently robust and accurate to model the continuum hydrodynamics of dry granular flows in a laboratory setting. Results of the simulations suggest the potential of the formulation for modeling more complex, field-scale scenarios characterized by more elaborate geometry and multi-physical processes. To the authors’ knowledge, this is the first time the multiplicative plasticity approach has been applied to granular flows in the context of the SPH method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号