首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fitting matrix-valued variogram models by simultaneous diagonalization (Part I: Theory)
Authors:Tailiang Xie  Donald E Myers
Institution:1. Biometry Section, Arizona Cancer Center, University of Arizona, 85724, Tucson, Arizona
2. Department of Mathematics, University of Arizona, 85721, Tucson, Arizona
Abstract:Suppose that ¯(x1),...,¯Z(xn). are observations of vector-valued random function ¯(x). In the isotropic situation, the sample variogram γ*(h) for a given lag h is $$\bar \gamma ^ * (h) = \frac{1}{{2N(h)}}\mathop \sum \limits_{s(h)} (\overline Z (x_1 ) - \overline Z (x_1 )) \overline {(Z} (x_1 ) - \overline Z (x_1 ))^T $$ where s(h) is a set of paired points with distance h and N(h) is the number of pairs in s(h).. For a selection of lags h1, h2, .... hk such that N (h1) > O. we obtain a ktuple of (semi) positive definite matrices $\bar \gamma ^ * (h_{ 1} ),. . . ., \bar \gamma ^ * (h_{ k} )$ . We want to determine an orthonormal matrix B which simultaneously diagonalizes the $\bar \gamma ^ * (h_{ 1} ),. . . ., \bar \gamma ^ * (h_{ k} )$ or nearly diagonalizes them in the sense that the sum of squares of offdiagonal elements is small compared to the sum of squares of diagonal elements. If such a B exists, we linearly transform $\overline Z (x)$ by $\overline Y (x) = B\overline Z (x)$ . Then, the resulting vector function $\overline Y (x)$ has less spatial correlation among its components than $\overline Z (x)$ does. The components of $\overline Y (x)$ with little contribution to the variogram structure may be dropped, and small crossvariograms fitted by straightlines. Variogram models obtained by this scheme preserve the negative definiteness property of variograms (in the matrix-valued function sense). A simplified analysis and computation in cokriging can be carried out. The principles of this scheme arc presented in this paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号