首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transmission electron microscope study of dislocations in orthopyroxene (Mg,Fe)2Si2O6
Authors:J C Van Duysen  N Doukhan  J C Doukhan
Institution:1. Laboratoire de Structure et Propriétés de l'Etat Solide, Université de Lille I, 59655, Villeneuve d'Ascq Cédex, France
Abstract:The orthopyroxene crystal structure can be viewed as the stacking of alternating tetrahedral and octahedral layers parallel to the (100) plane. Easy glide occurs in the (100) plane at the level of the octahedral layer to prevent breakage of the strong Si-O bonds. Dislocations with c and b Burgers vectors have been activated in (100) by room temperature indentation in an orthoenstatite gem quality single crystal. Investigations in transmission electron microscopy show that the b dislocations (b?9 Å) are not dissociated while the c's (c=5.24 Å) are dissociated into four partials. This result is interpreted by considering the oxygen sublattice as a distorted FCC one. The four c partials are thus Shockley partials bounding three stacking faults. For the two outer ones, synchroshear of the cations is necessary to keep unchanged their sixfold coordination; the oxygen sublattice is locally transformed into a HCP lattice. This accounts for the observed low splitting (?100 Å) of these faults as compared to the median one (?500 Å) which does not affect the oxygen sublattice and does not require cation synchroshear. In a Fe rich orthopyroxene (eulite), semi coherent exsolution lamellae have been studied. Either only c edge dislocations or both b and c edge dislocations occur in the phase boundaries depending upon the thickness of the lamellae. Only the c dislocations are dissociated. From the observed spacing between these mismatch dislocations a crude estimate of the exsolution temperature is proposed T ex ? 700° C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号