首页 | 本学科首页   官方微博 | 高级检索  
     

密度聚类算法在连续分布点云去噪中的应用
引用本文:张巧英,陈浩,朱爽. 密度聚类算法在连续分布点云去噪中的应用[J]. 地理空间信息, 2011, 0(6): 101-104
作者姓名:张巧英  陈浩  朱爽
作者单位:浙江省测绘大队,浙江杭州,310007
摘    要:
在原始测量获取的点云数据中,除了目标数据外,还有大量的噪声数据。噪声往往无规律地分布在目标物体周围,难以用统一数学模型区分。基于密度的聚类算法将簇定义为密度相连的点的最大集合,能发现任意形状、大小的类簇,将该算法应用在点云去噪中,能将密度分布连续点进行聚类,从中提取出目标点云。

关 键 词:基于密度的聚类  点云密度分布  点云去噪

Application of Density-based Clustering Algorithms in Noise Removing of Continuous Distributed Point Clouds
Affiliation:ZHANG Qiaoying
Abstract:
There are lots of noise data in the raw data except the target data. And the noise data always distribute around the target object irregularly, it is impossible to build a math model to make a distinction between the noise data and target data. The cluster is defined as the maximum set of density-collected in Density-based clustering algorithms, it can discover arbitrary shaped or sized cluster. To apply this algorithm it the noise removing of point clouds, can make the continuous distributed points as a cluster, and then extract the target point clouds.
Keywords:Density-based clustering algorithms  the density distribution of point cloud  noise remove
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号