首页 | 本学科首页   官方微博 | 高级检索  
     检索      


River profiles along the Himalayan arc as indicators of active tectonics
Authors:L Seeber  V Gornitz
Institution:Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y. 10964 U.S.A.
Abstract:Longitudinal profiles along sixteen major transverse Himalayan rivers add important constraints to models of active continental subduction and its evolution. These profiles are characterized by a zone of relatively high gradient that cannot be associated with differential resistence to erosion in all cases. The base of the zone of increased gradients correlates with (1) the topographic front between the Lesser and High Himalayas, (2) the narrow belt of intermediate-magnitude thrust earthquakes, (3) the Main Central Thrust zone (MCT). These features define a small circle in the central portion of the Himalayan arc. These correlations suggest that the discontinuity in the river profiles and the other features are controlled by a major tectonic boundary between the rising High Himalayas and the Lesser Himalayas. No sharp increases in gradient are observed near the Main Boundary Thrust (MBT), except on a few rivers, such as the Jhelum or Kundar, where the MBT lies close to both the MCT and the seismic belt. Thus, it is unlikely that the MBT is a major tectonic boundary. The diversion of river courses along the MBT and around anticlines in the Sub Himalayas has probably been caused by aggradation near the rosion-deposition boundary, upstream of uplifts in the Mahabharat range and Sub Himalayas.A parallel is drawn between the Himalayas and New Guinea based on the hypothesis that continent-arc collision, of the type occurring in northern Australia, preceded continent-continent collision in the Himalayas. The present sedimentary/tectonic phase in New Guinea resembles the Subathu (Paleocene-Eocene) phase in the Himalayas. Incipient counterparts of the major Himalayan structures, including the MCT and the MBT, are recognized in New Guinea. The drainage patterns in the Himalayas and in New Guinea bear a similar relation to major structures. This suggests that (1) the tectonic evolution of the Himalayas has been rather uniform since early stages of collision, and (2) the Himalayan drainage was also formed at these early stages and is therefore antecedent to the rise of the High Himalayas.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号