Abstract: | Compositional zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) deposit in western Germany (12.9 ka) are reported. These rocks represent the cooler outer portion and crystal-rich products of a cooling magma reservoir at upper crustal levels. Major and trace-element difference between cores and rims in sanidine crystals represent two generations of crystal growth separated by unmixing of a carbonate melt. Trace-element differences measured by LA–ICP–MS are in accordance with silicate–carbonate unmixing. Across the core–rim boundary, we extracted gray-scale profiles from multiple accumulations of back-scattered electron images. Gray scales directly represent K/Na ratios owing to low concentrations of Ba and Sr (30 ppm). Diffusion gradients are modeled to solve for temperature using known pre-eruptive U–Th zircon ages (0–20 ky) of each sample (Schmitt et al., J Petrol 51:1053–1085, 2010). Estimated temperatures range from 630 °C to 670 °C. For the exsolution boundaries, a diffusive homogenization model is constrained by the solvus temperature of ~ 712_725 °C and gives short time scales of only 15–50 days. Based on our results, we present a model for the temperature–time history of these rocks. The model also constrains the thermal variation across the cooling crystal-rich carapace of the magma reservoir over 20 ka and suggests a thermal reactivation of cumulates, the cooling carapace, and probably the entire system only a few years prior to the explosive eruption of the remaining molten core of the phonolitic magma reservoir. |