Formation of Zn–Ca phyllomanganate nanoparticles in grass roots |
| |
Authors: | Bruno Lanson, Matthew A. Marcus, Sirine Fakra, Fr d ric Panfili, Nicolas Geoffroy,Alain Manceau |
| |
Affiliation: | aMineralogy & Environments Group, Maison des GéoSciences, Université Joseph Fourier – CNRS, F-38041 Grenoble Cedex 9, France bAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
| |
Abstract: | It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 Å in the ab plane and contain only 1.2 layers (8.6 Å) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn–Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|