首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical characteristics, Ar–Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran
Authors:AM Ghazi  AA Hassanipak  JJ Mahoney  RA Duncan  
Institution:aDepartment of Geology, Georgia State University, 24 Peachtree Center Ave., Kell Hall, Atlanta, GA 30303-3083, USA;bDepartment of Mining Engineering, University of Tehran, Tehran, Iran;cDepartment of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822, USA;dCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Abstract:The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).
Keywords:Ophiolite  Accretionary prism  Neo-Tethys  Makran  Geochronology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号