首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ocean Response to a Climate Change Heat-Flux Perturbation in an Ocean Model and Its Corresponding Coupled Model
Authors:Jiangbo JIN  Xiao DONG  Juanxiong HE  Yi YU  Hailong LIU  Minghua ZHANG  Qingcun ZENG  He ZHANG  Xin GAO  Guangqing ZHOU  Yaqi WANG
Abstract:State-of-the-art coupled general circulation models (CGCMs) are used to predict ocean heat uptake (OHU) and sea-level change under global warming. However, the projections of different models vary, resulting in high uncertainty. Much of the inter-model spread is driven by responses to surface heat perturbations. This study mainly focuses on the response of the ocean to a surface heat flux perturbation F, as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). The results of ocean model were compared with those of a CGCM with the same ocean component. On the global scale, the changes in global mean temperature, ocean heat content (OHC), and steric sea level (SSL) simulated in the OGCM are generally consistent with CGCM simulations. Differences in changes in ocean temperature, OHC, and SSL between the two models primarily occur in the Arctic and Atlantic Oceans (AA) and the Southern Ocean (SO) basins. In addition to the differences in surface heat flux anomalies between the two models, differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins. These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation (AMOC) in CGCM. The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition. Furthermore, differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.
Keywords:ocean heat uptake  Atlantic meridional overturning circulation  ocean general circulation model  coupled general circulation model
本文献已被 维普 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号