首页 | 本学科首页   官方微博 | 高级检索  
     


Complementary (secondary) metabolites in a soft coral: sex-specific variability, inter-clonal variability, and competition
Authors:Beatriz Fleury,John Coll,&   Paul Sammarco
Affiliation: NPPN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil;  Chancellery Australian Catholic University, North Sydney, Australia;  Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, USA
Abstract:Sex‐specific interactions involving competition for space between the dioecious alcyonacean soft coral Sarcophyton glaucum and the scleractinian coral Acropora robusta were assessed experimentally on Bald Rock, central region of the Great Barrier Reef. To examine this, plus inter‐clonal responses, one male colony of S. glaucum, known to produce sarcophytoxide as its predominant complementary (secondary) metabolite, was sectioned, producing 10 clones. The same was done for a female colony. These two sets of clones were then relocated to grids and placed in contact with Acropora clones. Relocated and non‐relocated controls were also monitored. High levels of tissue necrosis were observed in the hard coral under contact conditions with both the male and female clones after 20 days. The development of a protective polysaccharide layer in the alcyonacean was also observed. Differences observed in the concentrations of complementary metabolites within the two different S. glaucum colonies were related to sex. Both under competition and non‐competition conditions, females exhibited significantly higher concentrations of sarcophytoxide than males, and this increased with time. Fatty ester concentration was also higher in females than males, varying significantly through time, and falling dramatically just after spawning. Fatty ester concentrations decreased linearly through time in the male clones. When involved in competition for space, females possessed higher concentrations of fatty esters than males, both at the site of contact and in non‐contact sites, again, decreasing after spawning. No significant changes in sarcophytoxide levels were noted in the parental colonies, but such changes were observed in fatty esters, with the female producing higher concentrations until after spawning. The use of these two variates in the form of a ratio (sarcophytoxide concentration:fatty ester concentration) yielded a variable Rho (ρ) which was a more sensitive indicator of biochemical change than either of its components alone. These two sets of compounds appeared to have a negative association through time and varied highly significantly between sexes. The diterpene sarcophytoxide may be considered an allelopathic or stress metabolite, while the lipids act as energy storage metabolites.
Keywords:Alcyonacea    allelopathy    clone    competition    reproduction    sex
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号