首页 | 本学科首页   官方微博 | 高级检索  
     

集合平均所构成的动力系统及其特性研究
引用本文:王鹏飞,温冠环,黄刚. 集合平均所构成的动力系统及其特性研究[J]. 大气科学学报, 2014, 37(6): 723-731
作者姓名:王鹏飞  温冠环  黄刚
作者单位:1. 中国科学院大气物理研究所季风系统研究中心,北京100190;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029
2. 中国科学院大气物理研究所季风系统研究中心,北京100190;中国科学院大学,北京100049
3. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京,100029
基金项目:国家自然科学基金资助项目,国家重点基础研究发展计划项目,中国科学院超级计算重点应用示范项目
摘    要:以Lorenz系统为例,推导出集合平均所定义的完整动力方程(均值方程),将初值的集合平均问题作为一个广义的动力系统问题来进行研究;对于双初值和多初值的均值方程,利用定性理论分析了其吸引中心的位置和个数,并使用数值试验进行了验证,结果表明平均值的吸引子的结构与原解的吸引子位置、数量和结构均有不同。对均值方程的特征矩阵分析表明,定点附近的稳定性与原方程相同,而且特征方程所对应的特征值也与原方程相同。均值方程对应的相流散度为负值且数值上与原系统相同,因此其在相空间中的体积收缩速度和原系统相同,最终趋向一个低纬曲面,均值方程的这个性质使得Lorenz系统的集合平均解趋于一个吸引子。均值方程可以保持原方程的耗散特性、吸引子特性,但稳定点位置和个数发生了变化,非定点处的Jacobian矩阵特征值与原系统也有不同。简而言之,一旦使用了集合平均方法,那么集合数值解并不是原系统的解,仅保持了原系统的部分特征,因而集合平均是否有效需要根据具体问题和其他外部限定条件才能确定。

关 键 词:Lorenz方程  集合平均  稳定性  Jacobian矩阵
收稿时间:2013-10-30
修稿时间:2013-12-06

An approach for analyzing the ensemble mean from a dynamic point of view
WANG Peng-fei,WEN Guan-huan and HUANG Gang. An approach for analyzing the ensemble mean from a dynamic point of view[J]. Transactions of Atmospheric Sciences, 2014, 37(6): 723-731
Authors:WANG Peng-fei  WEN Guan-huan  HUANG Gang
Affiliation:Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:Simultaneous ensemble mean equations for the Lorenz model(LEMEs) are obtained, enabling us to analyze the properties of the ensemble mean from a dynamical point of view.The qualitative analysis for the two-sample and N-sample LEMEs shows that the locations and number of stable points are different from the Lorenz equations(LEs), and the results are validated by numerical experiments.The analysis for the eigenmatrix of stable points of LEMEs indicates that the stability of these stable points is similar to the Les''.The eigenmatrix for non-stable points can be obtained too, but the eigenvalues depend not only on the value of the mean variable but also the other N-1 sample equation''s variable, and thus for these points there may be different stabilities compared to the LEs''.The divergence of the LEMEs'' flow has a negative value, which is the same as the LEs'', and thus the trajectory in phase space approaches zero and the trajectory will be attracted to a low-level dimensional curved surface, i.e., the LEMEs have the attractor property, but the structure of the attractor is not the same as the LEs''.The emsemble mean method only keeps part of the original equations'' properties, and thus whether the method is effective depends on the objective problem and other external restrictive conditions.
Keywords:Lorenz equation  ensemble mean  stability  Jacobian matrix
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学学报》浏览原始摘要信息
点击此处可从《大气科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号