首页 | 本学科首页   官方微博 | 高级检索  
     


A neural network approach to classification of sidescan sonarimagery from a midocean ridge area
Authors:Stewart   W.K. Min Jiang Marra   M.
Affiliation:Dept. of Appl. Ocean Phys. & Eng., Woods Hole Oceanogr. Inst., MA;
Abstract:A neural-network approach to classification of sidescan-sonar imagery is tested on data from three distinct geoacoustic provinces of a midocean-ridge spreading center: axial valley, ridge flank, and sediment pond. The extraction of representative features from the sidescan imagery is analyzed, and the performance of several commonly used texture measures are compared in terms of classification accuracy using a backpropagation neural network. A suite of experiments compares the effectiveness of different feature vectors, the selection of training patterns, the configuration of the neural network, and two widely used statistical methods: Fisher-pairwise classifier and nearest-mean algorithm with Mahalanobis distance measure. The feature vectors compared here comprise spectral estimates, gray-level run length, spatial gray-level dependence matrix, and gray-level differences. The overall accurate classification rates using the best feature set for the three seafloor types are: sediment ponds, 85.9%; ridge flanks, 91.2%; and valleys, 80.1%. While most current approaches are statistical, the significant finding in this study is that high performance for seafloor classification in terms of accuracy and computation can be achieved using a neural network with the proper combination of texture features. These are preliminary results of our program toward the automated segmentation and classification of undersea terrain
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号