首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New insights into Holocene atmospheric circulation dynamics in central Scandinavia inferred from oxygen‐isotope records of lake‐sediment cellulose
Authors:NATALIE A ST AMOUR  DAN HAMMARLUND  THOMAS WD EDWARDS  BRENT B WOLFE
Institution:1. Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada;2. Quaternary Sciences, Department of Earth and Ecosystems Sciences, Lund University, S?lvegatan 12, 223 62 Lund, Sweden;3. Department of Geography and Environmental Studies, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
Abstract:St. Amour, N. A., Hammarlund, D., Edwards, T. W. D. & Wolfe, B. B. 2010: New insights into Holocene atmospheric circulation dynamics in central Scandinavia inferred from oxygen‐isotope records of lake‐sediment cellulose. Boreas, Vol. 39, pp. 770–782. 10.1111/j.1502‐3885.2010.00169.x. ISSN 0300‐9843 Cellulose‐inferred lakewater oxygen‐isotope records have been obtained from two hydrologically open basins (Lake Spåime and Lake Svartkälstjärn), located on a west–east transect across central Sweden, to investigate changes in atmospheric circulation patterns during the Holocene. The Lake Spåime δ18O record is sensitive to changes in the seasonal distribution of precipitation in the Scandes Mountains of west‐central Sweden, and thus generally portrays variations in δ18O of precipitation (δ18OP) that are governed predominantly by the influence of air masses originating from the North Atlantic. In contrast, the Lake Svartkälstjärn δ18O record appears to reflect the varying influence of air masses delivering moisture from the North Atlantic and the Baltic Sea. A comparison of inferred changes in δ18OP over the Holocene between the two sites reveals systematic patterns of variability over widely different time scales. These include: (1) a previously recognized long‐term regional decline in δ18OP, possibly in response to the declining vigour of Northern Hemisphere atmospheric circulation related to decreasing summer solar insolation; (2) newly identified inverse centennial‐ to millennial‐scale δ18OP fluctuations at the two sites that may be linked to changes in modes of atmospheric circulation analogous to those described at interannual to multidecadal time scales by the North Atlantic Oscillation (NAO) index; and (3) a prolonged interval of apparent climatic stability in the mid‐Holocene (c. 6300–4200 cal. yr BP) characterized by persistently negative NAO‐like circulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号