首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface
Authors:Steeve Bonneville  Daniel J Morgan  Andrew Bray  Steven A Banwart
Institution:a Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
b Leeds Electron Microscopy and Spectroscopy Centre, Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT, United Kingdom
c Kroto Research Institute, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S3 7HQ, United Kingdom
Abstract:In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, the nutrients necessary for their growth and maintenance. Despite their central role in soils, the mechanism and kinetics of mineral alteration by mycorrhiza are poorly constrained quantitatively. Here, we report in situ quantification of weathering rates from a mineral substrate, (0 0 1) basal plane of biotite, by a surface-bound hypha of Paxillus involutus, grown in association with the root system of a Scots pine, Pinus sylvestris. Four thin-sections were extracted by focused ion beam (FIB) milling along a single hypha grown over the biotite surface. Depth-profile of Si, O, K, Mg, Fe and Al concentrations were performed at the hypha-biotite interface by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals of K (50-65%), Mg (55-75%), Fe (80-85%) and Al (75-85%) were observed in the topmost 40 nm of biotite underneath the hypha while Si and O are preserved throughout the depth-profile. A quantitative model of alteration at the hypha-scale was developed based on solid-state diffusion fluxes of elements into the hypha and the break-down/mineralogical re-arrangement of biotite. A strong acidification was also observed with hypha bound to the biotite surface reaching pH < 4.6. When consistently compared with the abiotic biotite dissolution, we conclude that the surface-bound mycorrhiza accelerate the biotite alteration kinetics between pH 3.5 and 5.8 to ∼0.04 μmol biotite m−2 h−1. Our current work reaffirms that fungal mineral alteration is a process that combines our previously documented bio-mechanical forcing with the μm-scale acidification mediated by surface-bound hypha and a subsequent chemical element removal due to the fungal action. As such, our study presents a first kinetic framework for mycorrhizal alteration at the hypha-scale under close-to-natural experimental conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号