The influence of Mercury’s inner core on its physical libration |
| |
Authors: | Martin Veasey |
| |
Affiliation: | Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 |
| |
Abstract: | ![]() As Mercury orbits the Sun, gravitational torques on its equatorial elliptical shape give rise to a planetary libration. The amplitude of Mercury’s libration, as determined from Earth-based radar speckle pattern observations, suggests that only the mantle participates in the motion. This indicates a decoupling between the core and the mantle, and therefore that the outermost part of the core must be fluid. If a solid inner core is present at the center of Mercury, the equatorial elliptical shape of the latter may become misaligned with that of Mercury’s mantle, leading to an internal gravitational torque between the two. If this torque is large, it may participate in the dynamics of Mercury’s libration. The goal of this work is to determine whether Mercury’s observed librations can be used to place constraints on the properties of its inner core. We present a comparison between predicted and observed librations for a range of interior models of Mercury, with various inner core sizes and fluid core densities. We show that a marginally better fit to observations can be achieved for interior models that have an inner core radius larger than 400 km. However, the improvement in fit is small, and it is not possible to draw robust conclusions on the size of Mercury’s inner core on the basis of existing libration data. Nevertheless, our study demonstrates that the influence of the inner core on the libration of Mercury could be detected with a decade worth of accurate observations. |
| |
Keywords: | Mercury, Interior Rotational dynamics Radar observations Resonances, Spin-orbit |
本文献已被 ScienceDirect 等数据库收录! |
|