首页 | 本学科首页   官方微博 | 高级检索  
     


Mo isotope composition in Mo-rich high- and low-T hydrothermal systems from the Swiss Alps
Authors:Nicolas D. Greber,Beda A. Hofmann,Igor M. Villa,Thomas F. Nä  gler
Affiliation:a Institut für Geologie, Universität Bern, Baltzerstrasse 3, 3012 Bern, Switzerland
b Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
c Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano Bicocca, 20126 Milano, Italy
Abstract:We analyzed the molybdenum (Mo) isotope compositions (IC) of 59 samples from two molybdenite mineralizations (Alpjahorn and Grimsel) and from a Mo-rich hydrothermal breccia (Grimsel) from the Aar Massif, Switzerland. The formation temperature of the Late Paleozoic Mo mineralizations (300-600 °C) is much higher than that of the Pliocene breccia (100-160 °C). The Mo IC of the molybdenites varies over 1.35‰. Even in a single hand specimen it spans 0.45‰, indicating that fractionation processes during molybdenite precipitation can vary on a cm scale. The Mo IC of most molybdenites analyzed here are significantly heavier than that of the host rock (δ98/95Mo = (0.05 ± 0.1)‰) and show a bimodal distribution centered around δ98/95Mo ≈ 1.1‰ and 0.2‰. This result rules out single stage Rayleigh fractionation as the relevant formation mechanism and instead, redox variations are suggested to be a main factor controlling the Mo IC of the studied high-temperature Mo deposits. The range of the Mo IC in one single deposit, the Alpjahorn, overlaps with the variation range of almost all other published values for Mo IC in Mo deposits. Compared to the molybdenites, the breccia shows an even wider variation of 3.0‰ (δ98/95Mo between −1.6‰ and +1.4‰). In contrast to the high-T molybdenite deposits, here the Mo was transported via oxidized surface waters into the breccia system, where it was reduced and precipitated. This indicates that oxidation and reduction of Mo complexes may lead to highly variable Mo IC in hydrothermal systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号