首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of rock alteration patterns: A potential tool in mineral exploration
Authors:R Freij-Ayoub  J L Walshe  H-B Muhlhaus
Institution:Division of Exploration and Mining , CSIRO , PO Box 437, Nedlands, WA, 6009, Australia
Abstract:Hydrothermal alteration of a quartz‐K‐feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300°C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass‐action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass‐balance equations are solved sequentially using an implicit scheme in a finite‐element code. The pore‐fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K‐feldspar. Our model simulates, in a simplified way, the acid‐induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.
Keywords:hydrothermal alteration  mineral exploration  numerical models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号