首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical aspects of the evolution and mineralization of the Amo Younger Granite Complex (northern Nigeria)
Authors:EG Imeokparia
Institution:

Department of Geology, University of Ibadan, Ibadan, Nigeria

Abstract:The Amo Complex forms one of the prominent ring intrusions in the Jos Plateau and it is lithologically composed of granite porphyry, riebeckite biotite granite, hornblende biotite granite and later intrusives of biotite granite. There are also small intrusions of albite riebeckite granite and albite biotite granite.

Major-element compositions of the principal rock units do not show significant differences. Comparison of the variations found in the granites with results of laboratory studies suggest either that water vapor and volatile transfer were important in the local magma series or at least they accompanied other systematic variations.

Trace-element associations vary; anomalous enrichments of Rb, Li, F, U, Th, Zr, Nb and HREE occur over mildly peralkaline riebeckite biotite granite, peralkaline albite riebeckite granite and albite biotite granite with peralkaline tendency, in contrast to their peraluminous equivalents. These cannot be explained by crystal-liquid fractionation processes and require the evolution of a Na-enriched fluid.

It is suggested that in the albite riebeckite granite and the albite biotite granite the combined effect of F, Li and Rb along with other volatiles may have led to a lower crystallization temperature such that two separate alkali feldspars (albite and microcline) crystallized individually.

Cassiterite and columbite mineralization occur mainly as magmatic disseminations within the terminal phases of the biotite granites and albite biotite granite. Diffused greisenization in association with quartz veins also carry cassiterite mineralization in the Tega and Timber Creek biotite granite phases. Although the magma may have supplied the ore elements and F for complexing, actual mineralization appears to be a product of postmagmatic processes.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号