摘 要: | 目标检测是遥感影像处理中一项基础性和常规性的工作。本文基于YOLOX(you only look once X)网络进行改进,设计了一种针对遥感影像目标的检测算法。首先在特征提取模块PANet(path aggregation network)中加入自适应空间特征融合(adaptively spatial feature fusion, ASFF)网络,针对目标检测中尺度不一致的细部特征进行深入挖掘。其次,设计了基于ECA(efficient channel attention)的特征提取模块,高效通道交互在更加关注特征图中正样本特征信息的同时降低了模型的复杂性。再次,为了避免过拟合造成梯度消失、激活效果弱的问题,提出使用swish激活函数。最后,在DOTA(dataset for object detection in aerial images)上进行实验,通过消融实验定性分析、通过对比实验定量验证了本文算法的最佳机制和有效性。结果表明:在添加ASFF和ECA机制并且优化swish激活函数的前提下,改进网络模型的全类平均正确率(mean average precision, mAP...
|