摘 要: | 地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...
|