首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea
Abstract:We have investigated Mesozoic geological problems around the South China Sea (SCS) based on gravimetric, magnetic, seismic, and lithofacies data. Three-dimensional analytical signal amplitudes (ASA) of magnetic anomalies clearly define the inland tectonic boundaries and the residual Mesozoic basins offshore. The ASA suggest that the degree of magmatism and/or the average magnetic susceptibility of igneous rocks increase southeastwards and that late-stage A-type igneous rocks present along the coast of southeast China possess the highest effective susceptibility. The geophysical data define Mesozoic sedimentary and tectonic structures and reveal four major unconformities Pz/T–J, T–J/J, J/K, and Mesozoic/Cenozoic (Pz, Palaeozic; T, Triassic; J, Jurassic; K, Cretaceous)], corresponding to regional tectonic events revealed by nine palaeogeographic time slices based on prior geological surveys and our new fieldwork. Showing both sedimentary and volcanic facies and regional faults, our palaeogeographic maps confirm an early Mesozoic northwestward-migrating orogeny that gradually obliterated the Tethyan regime, and a middle-to-late Mesozoic southeastward migration and younging in synchronized extension, faulting, and magmatism. Three major phases of marine deposition developed but were subsequently terminated by tectonic compression, uplift, erosion, faulting, rifting, and/or magmatism. The tectonic transition from the Tethyan to Pacific regimes was completed by the end of the Middle Triassic (ca. 220 Ma), reflecting widespread Mesozoic orogeny. The transition from an active to a passive continental margin occurred at the end of the Early Cretaceous (ca. 100 Ma); this was accompanied by significant changes in sedimentary environments, due likely to an eastward retreat of the palaeo-Pacific subduction zone and/or to the collision of the West Philippine block with Eurasia. The overall Mesozoic evolution of southeast China comprised almost an entire cycle of orogenic build-up, peneplanation, and later extension, all under the influence of the subducting palaeo-Pacific plate. Continental margin extension and rifting continued into the early Cenozoic, eventually triggering the Oligocene opening of the SCS.
Keywords:southeast China  tectonic Mesozoic–Oligocene transition  lithofacies  palaeogeography  geophysical interpretation  magnetic anomalies  South China Sea
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号