首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling Seismic Attributes of Pn Waves using the Spectral-Element Method
Authors:Ali C. Bakir  Robert L. Nowack
Affiliation:1. Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, 47907, USA
Abstract:To investigate the nature of Pn propagation, we have implemented the spectral-element method (SEM) for vertically and laterally varying media with and without attenuation. As a practical measure, essential features of the Pn waves are distilled into seismic attributes including arrival times, amplitudes and pulse frequencies. To validate the SEM simulations, we first compare the SEM results with reflectivity calculations of Braile and Smith (Geophys. J.R. Astr. Soc. 40, 145–176, 1975) and then to the asymptotic results of ?erveny and Ravindra (Theory of Seismic Headwaves, University of Toronto Press, pp. 235–250, 1971). Models with random, laterally varying Moho structures are then simulated, where the amplitude and pulse frequency characteristics are found to be stable to small Moho interface perturbations. SEM calculations for models with different upper-mantle velocity gradients are next performed where it is found that interference effects can strongly influence the Pn amplitudes and pulses frequencies. For larger-scale, laterally varying structures, SEM models similar to that found along the Hi-CLIMB array in Tibet are then performed. It is observed that large-scale structures, along with small-scale structures, upper-mantle velocity gradients and attenuation, can all significantly affect the Pn attributes. Ambiguities between upper-mantle velocity gradients and attenuation are also found when using Pn amplitudes and pulse frequency attributes. These ambiguities may be resolved, to some degree, by using the curvature of the travel times at longer regional distance, however, this would also be complicated by lateral variability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号