首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Another sea area separated from the Panthalassic Ocean in the Norian,the Late Triassic: The lowest Sr isotopic composition of the Ishimaki limestone in central Japan
Authors:Kazuhiro Suzuki  Yoshihiro Asahara  Koichi Mimura  Tsuyoshi Tanaka
Institution:1. Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan;2. Earth Science Laboratory, Aichi Prefectural Meiwa High School, Higashi-ku, Nagoya 461-0011, Japan;3. Center for Chronological Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Abstract:Mt. Ishimaki is the Jurassic accretionary complex of the Chichibu Belt in Toyohashi City, near Nagoya in central Japan. The Ishimaki limestone is thought to be seamount-type limestone. The P1 elements of the conodonts Norigondolella navicula and Ancyrogondolella quadrata found in the limestone indicate it is of Norian age. The Sr isotopic compositions of 45 Ishimaki limestone samples ranged from 0.7055 to 0.7077. Eighteen of these samples had lower Sr isotopic compositions than the lowest Sr isotopic composition (0.7068) of seawater throughout the Phanerozoic. The Sr isotopic compositions in the limestone block are generally lower at the base of the block and higher at the top. The present Sr isotopic compositions of the Ishimaki limestone are unlikely to have been reduced by post-depositional alteration because most of the limestone samples had a low amount of Mn (<300 ppm) or high Sr/Mn ratios (>2) and the conodont elements had low (1–2) CAI (conodont alteration index) values. Additionally, there was little acid-insoluble residue. Thus, the low Sr isotopic compositions are thought to represent the strontium of the past ambient seawater. The low Sr isotopic compositions are in complete disagreement with the generally recognised range of seawater Sr isotopic compositions in the Norian stage of the Late Triassic (0.7075–0.7078) because the depositional environment of the Ishimaki limestone was closed or semi-closed from the Panthalassic Ocean. Therefore, the Sr isotopic composition of the limestone differs from that of the Panthalassic seawater. The low Sr isotopic compositions were probably affected by Sr inflows from mafic oceanic crust by hydrothermal fluid circulation or from hinterlands surrounded by mafic rocks by river water circulation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号