首页 | 本学科首页   官方微博 | 高级检索  
     

近百年全球地表月气温数据的概况与初步整合
引用本文:徐文慧,李庆祥,杨溯,许艳. 近百年全球地表月气温数据的概况与初步整合[J]. 气候变化研究进展, 2014, 10(5): 358-364. DOI: 10.3969/j.issn.1673-1719.2014.05.007
作者姓名:徐文慧  李庆祥  杨溯  许艳
作者单位:中国气象局国家气象信息中心,北京 100081
基金项目:行业专项“近百年全球陆地气候变化监测技术与应用”,行业专项“气候数据时空分析关键技术及网格化产品的研发应用”,气候变化专项“近百年区域气候变化序列建立及不确定性评估”
摘    要:基于国际上最著名的4套全球地表月气温数据集,即英国东安格利亚大学气候研究所数据集(CRUTEM3)、美国国家气候数据中心数据集(GHCN-V3)、美国国家航天航空局数据集(GISSTMP)和Berkeley地球表面气温数据集,从分析现有资源的状况入手,通过广泛的国际调研与合作,整合了这4套全球地表逐月气温数据集和一些主要国家或地区的区域数据集,研发了中国第一套全球陆地表面逐月气温站点数据集。该数据集共包含全球9519站、7073站及6587站的月平均气温、最高及最低气温(序列长度不低于20年)数据,同CRUTEM3和GHCN-V3数据集相比,该数据集站点密度在各个区域都有所增加,尤其是在南美洲、非洲及亚洲地区;另外,1990年代以来的站点数量显著增加,有利于降低自1990年以来全球气温变化趋势估计的不确定性。

关 键 词:全球地表  逐月气温数据集  数据整合  气候变化  
收稿时间:2014-02-18
修稿时间:2014-05-07

Summary of the Typical Global Monthly Surface Temperature Datasets and the Integration of Multi-source Datasets
Xu Wenhui,Li Qingxiang,Yang Su,Xu Yan. Summary of the Typical Global Monthly Surface Temperature Datasets and the Integration of Multi-source Datasets[J]. Progressus Inquisitiones DE, 2014, 10(5): 358-364. DOI: 10.3969/j.issn.1673-1719.2014.05.007
Authors:Xu Wenhui  Li Qingxiang  Yang Su  Xu Yan
Abstract:Based on the four typical global monthly surface temperature datasets, namely the climate research dataset of the University of East Anglia (CRUTEM3), the dataset of the U.S. National Climatic Data Center (GHCN-V3), the dataset of the U.S. National Aeronautics and Space Administration (GISSTMP), and the Berkeley Earth surface temperature dataset, this paper analyzes the status of existing resources through extensive research and international cooperation. Then, China’s first global land monthly temperature dataset was developed by integrating the four global monthly surface temperature datasets and some regional datasets from the major countries or regions. This dataset contains 9519 stations from all over the world with the length no less than 20 years for monthly average temperature, 7073 for monthly maximum, and 6587 for monthly minimum temperature. Compared with CRUTEM3 and GHCN-V3, the station density of this dataset is much higher, especially in South America, Africa and Asia; besides, there are much more stations after the 1990s, which can dramatically reduce the uncertainty of the estimated global temperature trend since 1990.
Keywords:global land surface  monthly temperature dataset  data integration  climate change
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《气候变化研究进展》浏览原始摘要信息
点击此处可从《气候变化研究进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号