首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络在盐渍土盐胀特性研究中的应用
引用本文:宋启卓,陈龙珠. 人工神经网络在盐渍土盐胀特性研究中的应用[J]. 冰川冻土, 2006, 28(4): 607-612. DOI: 10.7522/j.issn.1000-0240.2006.0088
作者姓名:宋启卓  陈龙珠
作者单位:上海交通大学, 土木系安全与防灾工程研究所, 上海, 200030
摘    要:利用人工神经网络处理非线性体系的优势性,对盐渍土膨胀规律多影响因素试验数据进行了建模方法分析,提出了盐渍土盐胀率随含水量、氯化钠含量、硫酸钠含量、初始干容重和上覆荷载5因素变化的计算公式,计算结论比常规二次回归法更加符合目前对盐渍土盐胀规律的定性认识.

关 键 词:人工神经网络  盐渍土  盐胀率  交互作用  
文章编号:1000-0240(2006)04-0607-06
收稿时间:2005-11-11
修稿时间:2006-06-22

Application of Artificial Neural Network to Studying Salt Expansion Properties of Saline Soil
SONG Qi-zhuo,CHEN Long-zhu. Application of Artificial Neural Network to Studying Salt Expansion Properties of Saline Soil[J]. Journal of Glaciology and Geocryology, 2006, 28(4): 607-612. DOI: 10.7522/j.issn.1000-0240.2006.0088
Authors:SONG Qi-zhuo  CHEN Long-zhu
Affiliation:Institute of Engineering Safety and Disaster Prevention, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:A non-linear neural network model is established to study the salt expansion properties of saline soil under the function of the five factors,i.e., water content,NaCl concentration,Na_2SO_4 concentration,initial dry density and overburden pressure of saline soil,based on the documents mentioned in this paper.As compared with the traditional method of quadratic stepwise regression,it shows much more advantages and creditability in solving the problem of the non-linear interaction of multi influencing factors.At the same time,the formula of counting the expansion rate of saline soil under the function of the five factors is updated and coincided the present understanding of the properties of saline soil.
Keywords:artificial neural network  saline soil  salt expansion rate  interaction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号