首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observational Evidence for a Double-Helix Structure in CMEs and Magnetic Clouds
Authors:Vladimir Osherovich  Joseph Fainberg  Alla Webb
Institution:1. CUA/NASA Goddard Space Flight Center, Code 673, Greenbelt, MD, 20771, USA
2. NASA Goddard Space Flight Center, Code 673, Greenbelt, MD, 20771, USA
3. Montgomery College, 51 Mannakee St., Rockville, MD, 20850, USA
Abstract:We compare recent observations of a solar eruptive prominence as seen in extreme-UV light on 30 March 2010 by the Solar Dynamics Observatory (SDO) with the multi-tube model for interplanetary magnetic clouds (Osherovich, Fainberg, Stone, Geophys. Res. Lett. 26, 2597, 1999). Our model is based on an exact analytical solution of the plasma equilibrium with magnetic force balanced by a gradient of scalar gas pressure. Topologically, this solution describes two magnetic helices with opposite magnetic polarity embedded in a cylindrical magnetic flux tube that creates magnetic flux inequality between the two helices by enhancing one helix and suppressing the other. The magnetic field in this model is continuous everywhere and has a finite magnetic energy per unit length of the tube. These configurations have been introduced as MHD bounded states (Osherovich, Soln. Dannye 5, 70, 1975). Apparently, the SDO observations depict two non-equal magnetically interacting helices described by this analytical model. We consider magnetic and thermodynamic signatures of multiple magnetic flux ropes inside the same magnetic cloud, using in situ observations. The ratio of magnetic energy density to bulk speed solar wind energy density has been defined as a solar wind quasi-invariant (QI). We analyze the structure of the QI profile to probe the topology of the internal structure of magnetic clouds. From the superposition of 12 magnetically isolated clouds observed by Ulysses, we have found that the corresponding QI is consistent with our double helix model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号