首页 | 本学科首页   官方微博 | 高级检索  
     

Zn上的k次不可约多项式与k阶Carmichael数
引用本文:覃仕霞. Zn上的k次不可约多项式与k阶Carmichael数[J]. 成都信息工程学院学报, 2010, 25(5): 557-560
作者姓名:覃仕霞
作者单位:成都信息工程学院数学学院,四川,成都,610225
摘    要:
设n是合数,如果对一切f(x)∈Zn[x]都满足f(x)nk≡f(x)mod(n,r(x)),那么就称n是模r(x)的k阶Carmichael数,这里r(x)是Zn[x]上的k次首一不可约多项式,用Ck,r(x)表示所有这种数的集合,并且定义Ck=Ur(x)Ck,r(x).k阶Carmichael数,当k=4时,已证明了n=pq,p,q是不同的奇素数,p2-1,q3-1均整除n4-1,则n∈C4.主要目的是将k=4时得出的结论推广到k≥4的一般情形,利用孙子定理,通过构造Zn上的首一k次不可约多项式f(x)的方法,得出:在k≥4时,设n=pq,如果k=2m,m≥2,pm-1,q2m-1-1均整除nk-1,则n∈Ck;如果k=2m+1,m≥2,pm-1,pm+1-1,q2m-1均整除nk-1,则n∈Ck.

关 键 词:信息安全  密码学  k阶Carmichael数  不可约多项式  孙子定理

Irreducible Polynomials of Order k and Carmichael Numbers of Order k on Zn
QIN Shi-xia. Irreducible Polynomials of Order k and Carmichael Numbers of Order k on Zn[J]. Journal of Chengdu University of Information Technology, 2010, 25(5): 557-560
Authors:QIN Shi-xia
Affiliation:QIN Shi-xia(School of Mathematics,CUIT,Chengdu 610225,China)
Abstract:
Let n be a positive integer and Zn the ring of residues modulo n.Suppose r(x)∈Zn[x] is a monic irreducible polynomial of degree k.We call n a Carmichael number of order k modulo r(x),if n is composite and f(x)nk≡f(x)mod(n,r(x)) for all f(x)∈Zn[x].Denote the set of all such numbers by Ck,r(x).Define Ck=Ur(x)Ck,r(x),where r(x) passes through all monic irreducible polynomials of degree k over Zn.For Carmichael number set of order k,it has been proved that for k=4,if n=pq,where p,q are different odd prime numbers,and p2-1n4-1,q3-1n4-1,then n∈C4.The main purpose of this article is to extend the results which exist when k=4 to more extensive conditions of k≥4.We obtain the following theorem by using the method of the Remainder Theorem and constructing a monic irreducible polynomial of degree k on Zn: for k=4,suppose n=pq,if k=2m,m≥2,pm-1nk-1,q2m-1-1nk-1,then n∈Ck;if k=2m+1,m≥2,pm-1nk-1,pm+1-1nk-1,q2m-1nk-1,then n∈Ck.
Keywords:information security  cryptography  Carmichael numbers of order k  irreducible polynomials  Chinese remainder theorem  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号