首页 | 本学科首页   官方微博 | 高级检索  
     

斯托克司函数逼近及截断误差估计
引用本文:许厚泽,朱灼文. 斯托克司函数逼近及截断误差估计[J]. 地球物理学报, 1981, 24(1): 26-39
作者姓名:许厚泽  朱灼文
作者单位:中国科学院测量与地球物理研究所
摘    要:本文对高度异常及垂线偏差的截断误差进行了估计,导出了高阶截断系数的近似表达式。这些截断系数是振幅逐渐衰减的正弦函数,而且其振幅与斯托克司函数在界圆φ_0处的值密切相关。经分析认为,采用莫洛金斯基的最小平方逼近方法,将可使截断误差的数量级大为降低,值得在实际中采用。为了进一步提高截断系数的收敛速度,建议在最小平方逼近的基础上,附加上界圆φ_0处的边界条件,这样将较单纯的逼近为优。为此提出两种实施的方法:利用拉格朗日的条件极值和利用样条函数逼近。

关 键 词:截断误差估计  斯托克  样条函数逼近  垂线偏差  最小平方逼近  最佳平方逼近  表式  重力异常  高阶  勒让德多项式  
收稿时间:1980-04-11

APPROXIMATION OF STOKES' FUNCTION AND ESTIMATION OF TRUNCATION ERROR
XU HOU-ZE ZHU ZHUO-WEN. APPROXIMATION OF STOKES' FUNCTION AND ESTIMATION OF TRUNCATION ERROR[J]. Chinese Journal of Geophysics, 1981, 24(1): 26-39
Authors:XU HOU-ZE ZHU ZHUO-WEN
Affiliation:Institute of Geodesy and Geopysics, Academia Sinica
Abstract:In this paper, the truncation errors of the height anomaly and vertical deflection are estimated, and the approximate expressions of the higher order truncation coefficients are derived. These truncation coefficients are sinusoidal functions with a gradually attenuated amplitude, which is closely correlated with the value of Stokes' function at the cap radius ψ0. It is considered through analysis that, the order of the truncation error may he greatly decreased by using the method of Molodensky's least squares approximation. So it is worth adopting in practice. In order to further raise the convergence velocity of the truncation coefficents, it is suggested that, adding the boundary conditions at the cap radius ψ0 on the basis of the least squares approximation, the result would he even better. In this connection we propose two methods for implementation: to use Lagrange's conditional extremum and the spline function approximation.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号