首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polysynthetically-twinned structures of enstatite and wollastonite
Authors:Yoshikazu Ohashi
Institution:1. Department of Geology, University of Pennsylvania, 19104, Philadelphia, PA, USA
Abstract:Crystal structures of clinoenstatite, orthoenstatite, wollastonite-1T and wollastonite-2M (parawollastonite) were refined to an R factor 3–4 percent level. Molar volumes at room temperature are 31.270(15), 31.315(8), 39.842(5) and 39.901(10) cm3/MSiO3, in the above-mentioned order, indicating that one-layer polytypes (clinoenstatite and wollastonite-1T) are stable at higher pressures than two-layer polytypes (orthoenstatite and wollastonite-2M). The polytypic relation of the enstatite polytypes can be described by four twinning operations — b glide ∥ to (110), a glide ∥ to (001), twofold screw axis ∥ to a (of orthoenstatite) and a twofold screw axis ∥ to c. For the wollastonite polytypes, twinning operations are twofold screw axis ∥ to b and a glide ∥ to (010). Structural adjustments after twinning are not necessarily the largest at the twin boundary (true in enstatite but not so in wollastonite). In both cases octahedral sites that involve bridging oxygens tend to show relatively large changes. Lattice strain ellipsoids associated with twinning are also different for enstatite and wollastonite, which implies that wollastonite may react differently from enstatite to non-hydrostatic pressure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号