首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hybrid time integration and coupled solution methods for nonlinear finite element analysis of partially saturated deformable porous media at small strain
Authors:Jaehong Kim  Wei Wang  Richard A Regueiro
Institution:1. Department of Civil Engineering, Chonbuk National University, Jeonju, Korea;2. Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, U.S.A.
Abstract:The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:partially saturated nonlinear elasticity  coupled pore fluid flow and solid skeleton deformation small strain finite element analysis  fully implicit  semi‐implicit  and explicit time integrations  mixed quadrilateral finite elements  monolithically coupled nonlinear solution method versus staggered‐coupled nonlinear solution method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号