首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrasonic attenuation of pure tetrahydrofuran hydrate
Authors:Mathias Pohl  Manika Prasad  Michael L. Batzle
Affiliation:Colorado School of Mines, Golden, USA
Abstract:Improved estimates of the amount of subsurface gas hydrates are needed for natural resource, geohazard, and climate impact assessments. To evaluate gas hydrate saturation from seismic methods, the properties of pure gas hydrates need to be known. Whereas the properties of sediments, specifically sands, and hydrate‐bearing sediments are well studied, the properties of pure hydrates are largely unknown. Hence, we present laboratory ultrasonic P‐wave velocity and attenuation measurements on pure tetrahydrofuran hydrates as they form with reducing temperatures from 25°C to 1°C under atmospheric pressure conditions. Tetrahydrofuran hydrates, with structure II symmetry, are considered as proxies for the structure I methane hydrates because both have similar effects on elastic properties of hydrate‐bearing sediments. We find that although velocity increased, the waveform frequency content and amplitude decreased after the hydrate formation reaction was complete, indicating an increase in P‐wave attenuation after hydrate formation. When the tetrahydrofuran hydrate was cooled below the freezing point of water, velocity and quality factor increased. Nuclear Magnetic Resonance results indicate the presence of water in the “pure hydrate” samples above the water freezing point, but none below. The presence of liquid water between hydrate grains most likely causes heightened attenuation in tetrahydrofuran hydrates above the freezing point of water. In naturally occurring hydrates, a similarly high attenuation might relate to the presence of water.
Keywords:Tetrahydrofuran  Gas hydrate  Ultrasonic velocity  Attenuation  NMR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号