首页 | 本学科首页   官方微博 | 高级检索  
     


An assessment of independent component analysis for detection of military targets from hyperspectral images
Authors:K.C. Tiwari  M.K. Arora  D. Singh
Affiliation:1. Department of Civil Engineering, IIT Roorkee, Roorkee 247667, India;2. Department of Electronics and Computer Engineering, IIT Roorkee, Roorkee 247667, India
Abstract:
Hyperspectral data acquired over hundreds of narrow contiguous wavelength bands are extremely suitable for target detection due to their high spectral resolution. Though spectral response of every material is expected to be unique, but in practice, it exhibits variations, which is known as spectral variability. Most target detection algorithms depend on spectral modelling using a priori available target spectra In practice, target spectra is, however, seldom available a priori. Independent component analysis (ICA) is a new evolving technique that aims at finding out components which are statistically independent or as independent as possible. The technique therefore has the potential of being used for target detection applications. A assessment of target detection from hyperspectral images using ICA and other algorithms based on spectral modelling may be of immense interest, since ICA does not require a priori target information. The aim of this paper is, thus, to assess the potential of ICA based algorithm vis a vis other prevailing algorithms for military target detection. Four spectral matching algorithms namely Orthogonal Subspace Projection (OSP), Constrained Energy Minimisation (CEM), Spectral Angle Mapper (SAM) and Spectral Correlation Mapper (SCM), and four anomaly detection algorithms namely OSP anomaly detector (OSPAD), Reed–Xiaoli anomaly detector (RXD), Uniform Target Detector (UTD) and a combination of Reed–Xiaoli anomaly detector and Uniform Target Detector (RXD–UTD) were considered. The experiments were conducted using a set of synthetic and AVIRIS hyperspectral images containing aircrafts as military targets. A comparison of true positive and false positive rates of target detections obtained from ICA and other algorithms plotted on a receiver operating curves (ROC) space indicates the superior performance of the ICA over other algorithms.
Keywords:Hyperspectral images   Spectral variability   Spectral matching algorithms   Anomaly detectors   Independent component analysis   ROC space
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号