首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance of quasilinear elastic constitutive models in simulation of geosynthetic encased columns
Authors:Majid Khabbazian  Victor N Kaliakin  Christopher L Meehan
Institution:Dept. of Civil and Environmental Engineering, 301 DuPont Hall, University of Delaware, Newark, DE 19716, USA
Abstract:Past numerical simulations of geosynthetic encased columns (GECs) using different versions of the quasilinear elastic hyperbolic model for the encased granular material have, in certain cases, yielded unrealistic results. In this paper the cause of such results is investigated by performing three-dimensional finite element analyses of GECs in soft clay, utilizing three common functional forms of the hyperbolic model for the encased granular material. Results indicate that one form of the hyperbolic model can predict an unrealistic lateral response for GECs during application of load to the column. In addition, the inability of hyperbolic models to properly account for soil behavior near failure compromises their ability to realistically capture the behavior of encased granular soil in GECs. Modeling the behavior of soil near failure is essential for properly simulating the behavior of GECs, as soil shear failure is necessary to mobilize the tensile stresses in the encasement and improve the stress–displacement response of the GEC. Although this type of hyperbolic model behavior was demonstrated for the specific case of encased soil in a GEC, the limitations of the hyperbolic model described herein apply equally to other geotechnical problems in which some portion of the soil mass is at or near failure.
Keywords:Finite element method  Granular materials  Constitutive models  Geosynthetics  Soft soils  Stone columns
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号