首页 | 本学科首页   官方微博 | 高级检索  
     


The difference between oceanic and continental tholeiites: a fluid dynamic explanation
Authors:I. H. Campbell
Affiliation:(1) Research School of Earth Sciences, The Australian National University, 2601 Canberra, A.C.T., Australia;(2) Present address: Room 3032, J. Tuzo Wilson, Research Laboratories Earth and Planetary Sciences, Erindale Campus, University of Toronto, L5L 1C6 Mississauga, Ontario, Canada
Abstract:Continental tholeiites have higher SiO2, K2O and light rare earth element contents and more evolved isotopic characteristics than their oceanic counterparts. These differences can be explained if the compositions of the parent magmas to both types of tholeiites are similar but if continental magmas assimilate significant amounts of continental crust en route to the surface. Although there is little doubt that most continental tholeiites have assimilated crustal material, the lcoation and mechanism of assimilation remain uncertain. Longhi (1981) has argued that magmas derived directly from the mantle should crystallize little orthopyroxene. The abundance of orthopyroxene in most continental layered intrusions suggests that they have crystallized from magmas which have assimilated continental crust. Since orthopyroxene is an early crystallizing phase in layered intrusions, this assimilation must occur early, before the magma enters the chamber. Assimilation can occur at the margins of the dykes which feed magma chambers, depending on the nature of the flow. If the flow is turbulent the high temperatures at the centre of the dyke will extend to the margins and the magma will erode the dyke walls. If the flow is laminar, a conductive profile develops at the margin and the flowing magma chills against the walls, protecting them from thermal erosion. The nature of flow in a dyke can be predicted from the Reynolds number, the criteria for turbulence. Reynolds number calculations suggest that the flow of primitive magmas in continental dykes will be fully turbulent and, if this is the case, assimilation of low melting point components in the walls of the dyke is inevitable. It is therefore suggested that many of the geochemical characteristics of continental tholeiites result from melting at the walls of dykes as primitive magmas ascend through the crust.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号